Extensions 1→N→G→Q→1 with N=C22×D29 and Q=C2

Direct product G=N×Q with N=C22×D29 and Q=C2
dρLabelID
C23×D29232C2^3xD29464,50

Semidirect products G=N:Q with N=C22×D29 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D29)⋊1C2 = C2×D116φ: C2/C1C2 ⊆ Out C22×D29232(C2^2xD29):1C2464,37
(C22×D29)⋊2C2 = D4×D29φ: C2/C1C2 ⊆ Out C22×D291164+(C2^2xD29):2C2464,39
(C22×D29)⋊3C2 = C2×C29⋊D4φ: C2/C1C2 ⊆ Out C22×D29232(C2^2xD29):3C2464,44

Non-split extensions G=N.Q with N=C22×D29 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D29).1C2 = D58⋊C4φ: C2/C1C2 ⊆ Out C22×D29232(C2^2xD29).1C2464,14
(C22×D29).2C2 = D29.D4φ: C2/C1C2 ⊆ Out C22×D291164+(C2^2xD29).2C2464,34
(C22×D29).3C2 = C22×C29⋊C4φ: C2/C1C2 ⊆ Out C22×D29116(C2^2xD29).3C2464,49
(C22×D29).4C2 = C2×C4×D29φ: trivial image232(C2^2xD29).4C2464,36

׿
×
𝔽